

Overvoltage protection in low-voltage supply networks

Overvoltages due to direct flashes

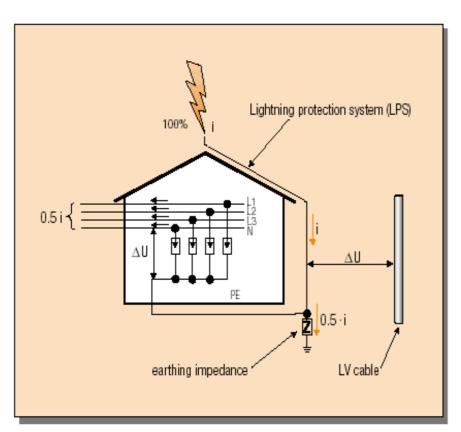
 $\mathbf{U} = \mathbf{Z}_0 \mathbf{x} \mathbf{i}/2$

- Assuming $Z_0 = 450 \Omega$ i = 20 kA
 - overvoltage U = 4500 kV

- Assuming $Z_0 = 10 \Omega$
 - i = 10 kA
 - overvoltage U = 100 kV

Induced overvoltages -

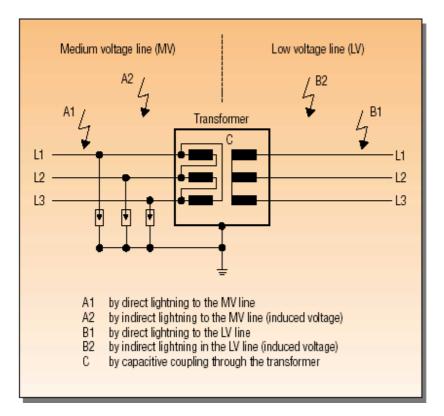
due to a lightning stroke at some distance from an overhead line

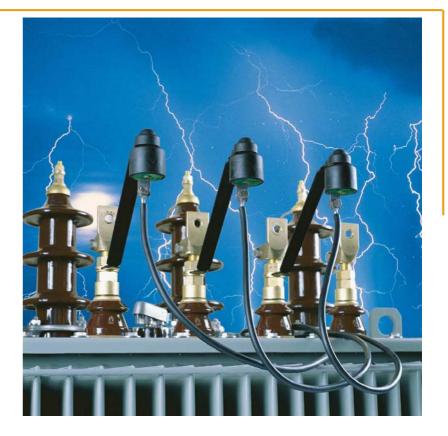


$U_{max} = Z_0 \times I_{max} \times H/D$

- I_{max} lighting current (peak
- Z_0 effective impendence (assumed 30 Ω)
- H height of the line
- D distance of the flash location from the line
- **Considering:**
- H = 5m,
- $I_{max} = 20 \text{ kA},$
- D = 100 m
- \rightarrow U_{max} = 30 kV

Overvoltages due to coupling

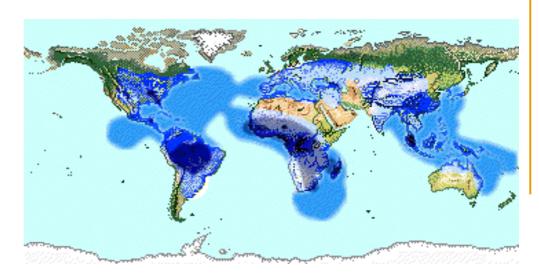



Inductive and capacitive coupling due to electromagnetic fields caused by the lightning current

Due to a potential rise of the earthing system, high voltage is generated between the earthing system and installations in vicinity

Transfered overvoltages through transformers

- Capacitive and magnetic coupling through the MV/LV transformer
- By earth coupling

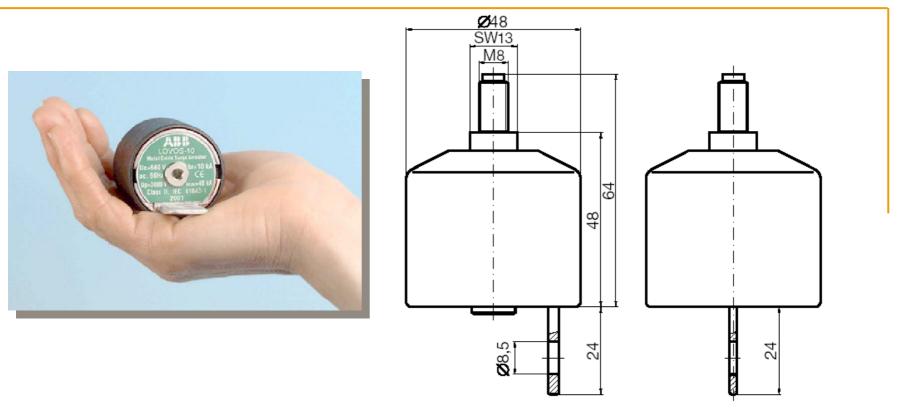

Probability of overvoltages

The frequency of lightning flashes to an overhead line depends on:

- Local flash density
- Line type
- Shielding effects

Direct flashes

$$N = A \times N_g \times 10^{-6}$$
$$A = 6 \times H \times L$$



Dark blue areas cover regions with a Keraunic level of 80 to 180 Light blue areas cover regions with a Keraunic level of 20 to 80

- A = effective area for direct lightning to the line (in m^{2})
- H = height of the line (in m)
- L = length of the line (in m)
- N_q = local flash density per km² per year

1 – surge arrester with disconnector

 U_c
 280-440-660 V AC

 I_n (8/20us)
 5/10 kA

 Maximum discharge current
 25/40 kA

 Energy absorption
 2.5/3.9 kJ/kV_{Uc}

 Classification acc. IEC 61643-1
 class II

A metal oxide surge arrester

LOVOS-5 and LOVOS-10 are a new generation of LV surge arresters without spark gaps, with varistors of latest metaloxide technology

LOVOS provide protection along LV overhead lines, cables for motors, switches etc., from LV side of distribution transformer up to measuring instruments

LOVOS is meant for high quality energy supply

LOVOS is tested according to the new international IEC 61643-1, 1998-02 standard and DIN/VDE 0675/6

Technology

LOVOS with disconnecting device, with insulated angle bracket (top) and flat earth terminal (bottom)

LOVOS without disconnecting device, with flat terminal for uninsulated lines (top) and flat earth terminal (bottom)

LOVOS includes a variator enclosed in a cover made by direct polyamide injection

In case of overstress LOVOS with a disconnecting device automatically ejects an earth terminal which remains hanging. Red colour of an earth terminal makes a failure visible from a distance of 10 m

LOVOS is offered with wide range of top and bottom accessories

Service conditions

Outdoor application

- For use in altitudes up to
 2000 m above the sea level
- UV resistant, moisture proof and self-extinguishing housing
- Accepts different climatic conditions: ambient temperatures from –40°C up to +70°C and humidity up to 90%

The view after an overload

LOVOS can be equipped with an automatic fault indicator.

> The disconnector - after an overload

Advantages are:

- allows to avoid short-circuits
- allows to identify afteroperation faults from a distance

Technical data

- □ For system voltages up to 1000 V
- **Frequency up to 62Hz**
- Nominal discharge current I_n 8/20 μs 5kA or 10kA
- Maximum discharge current I_{max} 8/20 μs 25 or 40 kA
- □ High current impulse 4/10 µs 40 or 65 kA*
- Classification acc. IEC 61643-1 class II
- Classification acc. DIN/VDE 0675/6 class A
- Tested according to new international standard IEC 61643-1, 1998-02 and DIN/VDE 0675/6

IEC 61643-1 - "Surge protective devices connected to low-voltage power distribution systems Part 1: Performance requirements and testing methods" DIN/VDE 0675/6 (Überspannungableiter zur Verwendung in Wechselstromnetzen mit Nennspannungen zwischen 100 V und 1000 V) * - acc. IEC 600099-4

Guaranteed data for LOVOS 5/10 kA

Тур	Uc Continous operating voltage	Minimum reference voltage at the current 1mA _{peak}	Up Voltage protection level	Energy absorption capability
	Vrms	Vrms	Vpeak	J
LOVOS-5	280	350	1150	700
$\ln = 5 kA$	440	550	1800	1100
	660	825	2700	1600
LOVOS-10	280	350	1150	1100
ln = 10 kA	440	550	1800	1750
	660	825	2700	2600

Advantages

- ABB brand, high technological level
- Disconnecting device
- A failure indicator visible from 10 m distance
- UV resistant and self extinguishing housing
- Wide range of accessories
 Easy mounting and connection
- No special mounting tools required

Arrester selection (Uc, Up, energy withstand capability)

Selection of U_c

Considering an upper tolerance in the system voltages of 10%

- $U_{c} \ge 1,1 U_{N}$ if connected line-to-line
- $U_c \ge 1,1 \ge U_N/\sqrt{3}$ if connected line-to-neutral or line-to-earth

For: 220/380 V, 230/400 V, 240/415 V systems following values are proposed:

- Uc = 280 V for TT and TN systems (phase to neutral, phase to earth)
- Uc = 440 V for IT systems (phase to neutral or phase to earth)
- Uc = 440 V for protection phase to phase in TT, TN IT systems (phase to phase)

Arrester selection (Uc, Up, energy withstand capability)

 Selection of U_p Up ≤ voltage withstand capability of the equipmen to be protected 	Voltage line-to-ne utral de rive d from nominal voltages a.c. or d.c. up to and inc luding	Rated impuls e voltage for equipment V			
20% safety margin as a general rule	V	Ι	Insulation	n category 	IV
0	50	330	500	800	1500
□ The lower the Up/Uc of an	100	500	800	1500	2500
arrester the higher	150	800	1500	2500	4000
provided protection level	300	1500	2500	4000	6000
	600	2500	4000	6000	8000
	1000	4000	6000	8000	12000

Arrester selection (Uc, Up, energy withstand capability)

Selection of the energy capability

Negative downward						
Percentage	98%	95%	80%	50%	20%	5%
Current peak value	> 4kA	> 6kA	> 20 kA	> 34 kA	> 55 kA	>90 kA

The energy capability of an arrester is defined by it's **I**max

Considering a lightning of I_{max} = 20 kA (80% probability) I_{max} = 90 kA (5% probability)

The lightning current on each phase can be divided by 6

A wave of 3.3 kA or 15 kA will travel in both directions

LOVOS with $I_n = 5 \text{ kA}$ (covering the 80 % of the events) and $I_{max} = 25 \text{ kA}$ (covering the very rare 5 % values) is therefore proposed as standard

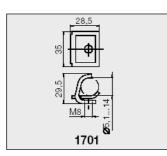
Installation into a system

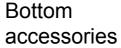
Possible modes of the protection

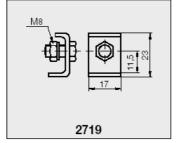
LOVOS connected	Power system type				
between:	TT	TN-C	TN-S	Π	
Line and neutral	Х		Х	Х*	
Line and PE	Х		Х	Х	
Line and PEN		Х			
Neutral and PE	Х		Х	х*	
Line to line	Х	Х	Х	Х	
*When the neutral is distributed					

The installation mode depends on on the earthling practice in the low voltage network

In case of a line to line connection two installation patterns are possible




Accessories



- The arresters may be also equipped with a range of top and bottom terminals. All terminals are made of non-corroding material.
- For an easy and reliable mounting you can choose from our selection of accessories.

Top accessories

For further information please contact:

Mr Dominik Biernat

Tel. +48 29 753 33 83 Fax. +48 29 753 33 29 e-mail: <u>dominik.biernat@pl.abb.com</u>

Mailing address: ABB Sp. z o.o. Branch in Przasnysz ul. Leszno 59 PL-06-300 Przasnysz, POLAND

Mr Grzegorz Syska

Tel. +48 29 753 3252 Fax. +48 29 753 33 29 e-mail: <u>grzegorz.syska@pl.abb.com</u>

Mailing address: ABB Sp. z o.o. Branch in Przasnysz ul. Leszno 59 PL-06-300 Przasnysz, POLAND

